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Abstract 14 

Catch-at-age or catch-at-size stock assessment models require specification of an effective sample size 15 

(ESS) as a weighting component for multinomial composition data.  ESS weights these data relative to 16 

other data that are fit, and is not an estimable parameter within a model that uses a multinomial 17 

likelihood.  The ESS is typically less than the actual sample size (the number of fish) because of factors 18 

such as sampling groups of fish (clusters) that are caught together.  A common approach for specifying 19 

ESS is to iteratively re-fit the model, estimating ESS after each fit so that the standardized residual 20 

variance is "correct," until ESS converges.  We survey iterative methods for determining ESS for a 21 

multinomial likelihood and apply them to two Great Lakes whitefish stocks.  We also propose an 22 

extension of such methods (the Generalized Mean Approach - GMA) for the case where ESS is based on 23 

mean age (or length) to account for correlation structures among proportions.  Our extension allows for 24 

greater flexibility in the relationship between ESS and sampling intensity.  Our results show that the 25 

choice of ESS estimation method can impact assessment model results.  Simulations (in the absence of 26 

correlation structures) showed that all the approaches to calculating effective sample size could provide 27 



 

 

reasonable results on average, however methods that estimated annual ESS independently across years 28 

were highly imprecise.  In our simulations and application, methods that did account for correlation 29 

structure in annual proportions produced lower ESS than those that did not and suggested that these 30 

methods are adjusting for a deviation from the multinomial correlation structure.  We recommend using 31 

methods that adjust for correlation structures in the proportions, and either assuming a constant ESS or, 32 

when there is substantial inter-annual variation in sampling levels, assuming ESS is related to sampling 33 

intensity and using the GMA or a similar approach to estimate that relationship.  34 



 

 

1. Introduction 35 

Catch-at-age and catch-at-size models are commonly used tools in stock assessment (e.g., Legault and 36 

Restrepo 1998, Methot and Wetzel 2013, Punt et al. 2013).  These models use observations of cohorts 37 

through time to estimate population parameters.  Because cohort size is a fundamental component, an 38 

accurate implementation of the relative abundance of age or size classes is critical to model accuracy.  In 39 

a model’s likelihood function, observations of the relative abundance of class size (expressed as 40 

proportions) are frequently compared to model-produced estimates during fitting using the multinomial 41 

likelihood (Francis 2014).  The influence of the proportions-at-age or at-size on the fit of the likelihood 42 

function is determined by the multinomial’s effective sample size parameter (ESS), which defines the 43 

expected amount of variability from a simple random sample of fish ages or sizes (Folmer and 44 

Pennington 2000, Methot and Wetzel 2013).  Determining ESS is important because this weighting 45 

factor can impact the model output quantities used by managers such as population size and fishing 46 

mortality rates (Francis 2011). 47 

The observed population composition data may be more variable than or have a correlation structure 48 

that differs from that of a multinomial sample of the observed number of fish.  Two causes are the 49 

spatial behavior of the fish and the spatial grouping of the sampling method (e.g., a trawl catches many 50 

fish together).  This amounts to cluster samples (Cochran 1977), which carry less information than the 51 

number of individuals actually aged or measured (McAllister and Ianelli 1997, Folmer and Pennington 52 

2000, Stewart and Hamel 2014), so ESS is typically smaller than the number of individuals processed.  A 53 

third cause, applicable to length-structured models, is the potential for large recruitment events to 54 

impact multiple adjacent length bins, producing such correlations.  Further complicating the issue, age 55 

compositions are often calculated based on both a length composition and an age-length key.  Due to 56 

this complex data structure, ESS cannot be determined directly from the number of fish aged or 57 



 

 

measured, although in some cases it can be estimated based on sampling theory (e.g., Crone and 58 

Sampson 1998, Pennington et al. 2002) or using an approach such as bootstrapping (e.g., Stewart and 59 

Hamel 2014); however it has been suggested that these data should not be weighted independently of 60 

an assessment model because much of the composition error may result from model process error 61 

rather than observation error (Francis 2016).  ESS also cannot be included as a parameter in models that 62 

use multinomial likelihoods for composition data because it is not estimable in the multinomial 63 

likelihood function. 64 

Various methods have been employed for fixing and estimating multinomial ESS (Francis 2011, Maunder 65 

2011), and these include ad-hoc and iterative approaches.  To recognize that the information content of 66 

the samples is less than the actual number of fish observed, ad-hoc methods may set a fixed ESS (e.g., 67 

Fournier and Archibald 1982; Fig. 1A) or treat the annual number of observations as the ESS up to a 68 

maximum value, and use this maximum when the number of observations exceeds the threshold (e.g., 69 

Fournier et al. 1998, Caroffino and Lenart 2010; Fig. 1B).  These ad-hoc approaches can be based on 70 

estimation of actual variances in other fisheries if formal sampling designs permit this (Crone and 71 

Sampson 1998), informal consideration of the observed variation in age compositions relative to what 72 

would be expected from a multinomial, or other forms of professional judgement. 73 

A variety of iterative approaches have been advanced (e.g., McAllister and Ianelli 1997, Francis 2011, 74 

Maunder 2011).  Francis (2011) argued that decisions regarding weighting (variances) for other data 75 

should be made first, followed by tuning ESS using iterative approaches.  Most approaches determine 76 

how variable data are about the model predictions, relative to how variable they are expected to be 77 

given the assumed ESS, and then refit the stock assessment model repeatedly, adjusting the ESS at each 78 

iteration to be consistent with the variation seen at the last iteration until ESS is stable. 79 



 

 

These iterative methods were classified by Francis (2011) based on whether they accounted for 80 

correlation structures or not, and their assumptions about "process error" (which in this case can be 81 

viewed as over-dispersion relative to a multinomial distribution based on the number of fish aged or 82 

measured).  Herein, correlation structure refers to a deviation from the weak negative correlation in 83 

proportions between all pairs of bins that arises from the multinomial distribution and the constraint 84 

that proportions sum to 1.0.  Our expectation is that such structure will generally involve the strongest 85 

positive correlations in observed proportions from proximal bins (e.g., ages 5 and 6) with positive 86 

correlations weakening and eventually becoming negative between proportions in bins that are farther 87 

apart (e.g., 4 and 9).  Methods that do not allow for correlation structures generally seek to set ESS to 88 

match variation in the proportions at age or length versus what would be expected from a multinomial 89 

distribution.  This includes McAllister and Ianelli’s (1997) commonly used approach (e.g., Wilberg et al. 90 

2005, Campana et al. 2010, Berger et al. 2012).  Methods that can account for correlation structure seek 91 

to set ESS to match variation in mean age or mean length that would be expected if the composition 92 

data arose from a multinomial distribution.  As originally implemented by McAllister and Ianelli, their 93 

iterative approach calculated an ESS for each year (for a data type), and then averaged these and used 94 

the same ESS for each year in the next iteration of the assessment model.  Thus they assumed that 95 

information content was constant over years and unrelated to any variation in sampling effort (Fig. 1A).  96 

Francis (2011) proposed two hypotheses that account for overdispersion, based on the idea that the 97 

adjustment of ESS from the number of samples should either be multiplicative or additive.  For the 98 

multiplicative case, if a particular composition sample was based on �� observations, then its 99 

information content (ESS) is �� = ���, where �� is the ESS and � is a multiplicative scaling factor (Fig. 100 

1C).  For the additive case, 
�
�� = �

�� + �
�	
� , the information content initially increases directly with 101 

sample number but approaches an asymptote, ��� (Fig. 1D). 102 



 

 

The hypothesized direct proportionality between ESS and sampling intensity arising from multiplicative 103 

error could apply to other measures of sampling intensity such as number of trips rather than number of 104 

fish aged or measured.  Iterative methods that do not account for correlation structure and use the 105 

observed variation in proportions along with the variability expected in a multinomial sample can at 106 

least theoretically calculate an ESS for each year.  Maunder (2011) suggested that in such cases rather 107 

than using these directly one could fit a statistical model relating these nominal effective sample sizes to 108 

observed sampling intensities, and use the predictions from the statistical model as the ESS in the next 109 

iteration.  This allows for consideration of more general relationships between ESS and sampling 110 

intensity than those arising from multiplicative or additive error acting alone.  For example one might 111 

hypothesize that information content of composition samples increases to an asymptote as a function of 112 

the number of trips sampled, rather than number of fish aged, but there would be no reason to assume 113 

an initial slope of 1.0.  Even when using number of ages or lengths as the predictor, an initial slope of 114 

less than 1.0 seems possible, i.e., both multiplicative and additive error could operate together.  This 115 

approach is not directly applicable to the methods that allow for correlation structures, as only one 116 

deviation between observed and expected means is available for each year.  Thus, for those methods, 117 

Francis (2011) indicated that either �	for the multiplicative hypothesis or ��� for the additive 118 

hypothesis is adjusted so the resulting variation is matched exactly for each iteration. 119 

In 1836 Treaty Waters of the Great Lakes, lake whitefish catch-at-age assessments use a multinomial 120 

likelihood for age compositions (Ebener et al. 2005, Truesdell and Bence 2016).  In these assessments, 121 

ESS is set to the actual number aged up to a maximum and to this maximum for higher levels of 122 

sampling (one of the ad-hoc methods described above; Fig. 1B).  The maximum is set by the professional 123 

judgement of individuals conducting the assessment, taking into account factors such as typical 124 

coverage and representativeness of the biological sampling (number of trips sampled and seasonal and 125 



 

 

spatial coverage of the fishery) as well as informal examination of the regularity of age compositions.  126 

This study is partially motivated by a desire to evaluate whether these ESS are consistent with those 127 

generated by iterative approaches.  Two lake whitefish stocks were chosen as examples for this study: 128 

the North Huron assessment area consolidated four previous lake whitefish assessment areas: WFH-01, 129 

WFH-02, WFH-03 and WFH-04.  The WFM-04 whitefish assessment area is in the northeastern part of 130 

Lake Michigan.  This is referred to here as the Lake Michigan stock area.  For details on these areas see 131 

MSC (2015). 132 

Specifically, the objectives for this study were to (1) estimate annual effective sample sizes using a range 133 

of iterative approaches for the two lake whitefish assessments, and determine how sensitive the 134 

assessments are to effective sample sizes, (2) compare results obtained from iterative approaches with 135 

those from status quo assessments, and (3) to extend existing iterative methods for determining 136 

effective sample sizes so that a more flexible asymptotic relationship between ESS and level of sampling 137 

could be estimated statistically for the case that allows for correlation structure.  This last objective was 138 

motivated by the observation that methods that do not account for correlation structures may often 139 

overestimate the information content of the data (Maunder 2011, Francis 2011), but the multiplicative 140 

and additive relationships may be too restrictive to capture how information content varies with actual 141 

sampling intensity. 142 

2. Methods 143 

2.1 Methods for estimating effective sample size 144 

We considered a range of iterative approaches for calculating effective sample sizes for use in age- or 145 

size-based assessment models.  These models use annual age or size compositions where each age or 146 

size group (hereafter “bin”) is a proportion and each set of annual proportions sum to 1.  The annual 147 

proportions are assumed by the assessment model to behave as though they arose from a multinomial 148 



 

 

sample of given size (the ESS).  These approaches were tested against simulated data and also applied to 149 

two example lake whitefish assessments from 1836 Treaty ceded waters of the North American 150 

Laurentian Great Lakes. 151 

2.1.1 Iterative approaches 152 

The basic iterative approach requires initial specification of ESS for each year and data type (e.g., type of 153 

fishery or survey) for which composition data are available.  For simplicity we have dropped a subscript 154 

for data type in our equations, but in our examples we have applied them separately by data type (in 155 

these cases trap net and gillnet fishery age compositions).  These initially specified effective sample sizes 156 

are identical to those used in the actual assessments and are used in the iteration 0 stock assessment.  157 

Results from the assessment then are used to evaluate how much the observed proportions (or annual 158 

summary of proportions, such as the mean age or mean length) deviate from the predictions of 159 

proportions for each bin (or predicted annual summaries).  New effective sample sizes are then 160 

calculated using this comparison such that the ESS from a multinomial sample would produce the 161 

observed amount of deviation from the measured values.  These generated effective sample sizes are 162 

then used in iteration 1 of the stock assessment model.  The steps of (i) evaluation of deviation between 163 

observed and predicted values from the assessment, and (ii) adjustment of effective sample sizes to be 164 

consistent with this variation, are then repeated until effective sample sizes converge (Fig. 2A).  For the 165 

purposes of this paper, convergence was defined as a maximum difference in estimated ESS from 166 

iteration � to iteration � + 1 (over years for all data types) of less than five, and iterations continued 167 

until convergence was achieved or a maximum of 25 iterations were completed. 168 

The different iterative approaches we considered are described in detail below, classified by whether 169 

they account for the possibility of correlation structures in proportions among bins, and any assumed 170 

relationship between ESS and a measure of sampling intensity (e.g., actual number of fish aged or 171 



 

 

number of trips sampled).  Francis (2011) proposed an ESS calculation based on variation in annual 172 

mean length or age, rather than the variation among individual bins, to account for correlation 173 

structure.  These are the methods we refer to as accounting for correlation structure.  Symbols 174 

associated with all methods are given in Table 1. 175 

2.1.2 Methods that do not account for correlation structures. 176 

Equations for determining the ESS used in each year (���) for these methods are given in Table 2.  The 177 

naming conventions for the methods that follow are based on Tables 2 and 3 (see Table 2 caption for an 178 

example).  Here we consider variations of three basic approaches.  The first approach (A) corresponds to 179 

the method originally proposed by McAllister and Ianelli (1997), and adapted by Francis (2011) as his 180 

method TA1.1.  The second (B) and third approaches (C) were presented by Francis (2011) as methods 181 

TA1.2 and TA1.3, respectively (see his Appendix Table 1).  These basic approaches can be applied using 182 

several different sub-approaches: (i) unconstrained year-specific values, (ii) constant values unchanged 183 

over years based either on (a) a geometric average of the year-specific values or (b) values using 184 

equations from iii, but with input sampling intensity specified as identical in each year, (iii) values 185 

directly proportional to sampling intensity (e.g., number of fish aged or number of trips sampled), or (iv) 186 

values following an asymptotic relationship with sampling intensity, where the asymptotic model’s 187 

parameters are estimated based on the relationship between the unconstrained year-specific values and 188 

sampling intensity.  In this last sub-approach, the parameters are estimated based on a nonlinear 189 

regression of the log of unconstrained year-specific estimates for that iteration (���)	versus sampling 190 

intensity (���).  We suggest applying the regression approach using an asymptotic function (Table 2), and 191 

use that function in our applications, but note the basic approach is more general.  In preliminary work 192 

we found that some individual unconstrained year-specific values could converge on unreasonably high 193 

ESS.  We therefore specified a year-specific maximum value (the actual number of fish aged for that year 194 

(for each data type) in our application) when determining the final ESS for the unconstrained year-195 



 

 

specific approaches (Table 2).  Approaches B and C, as originally put forward by Francis (2011), provided 196 

a single proportionality constant (w) between ESS and sampling intensity.  Our unconstrained year-197 

specific calculations of ESS, based on these approaches, simply applies those methods separately by year 198 

and algebraically re-expresses the result in terms of ESS instead of Francis’ w.  Sub-approaches ii-iv often 199 

involved estimation of initial year-specific ESS as for sub-approach i, and then further processing of 200 

these estimates to obtain the ESS used in the next iteration of the assessment model (��).  In our 201 

applications, in all cases where year-specific ESS were used in calculations, the initially calculated 202 

unconstrained year-specific ESS were reduced to the actual number of fish aged if the calculated ESS 203 

exceeded the number aged in that year.  We used this constraint because the effective sample size 204 

would generally not be greater than the actual number of fish sampled (i.e., realistic situations where 205 

compositional data would be under-dispersed are hard to contrive).  This change was made prior to any 206 

additional processing or use in the assessment and also applied when the number of trips were used as 207 

��.  The methods B.iii and C.iii did not first involve calculation of unconstrained year-specific ESS, but 208 

instead the calculation of a single weight, w, which was then used to calculate year-specific values 209 

proportional to sampling intensity. 210 

2.1.3 Methods that did account for correlation structures. 211 

In cases with correlation structure, a given ESS might produce variation between observed and expected 212 

proportions that is consistent with what would be expected from a multinomial distribution with that 213 

ESS, but variation between the observed and predicted mean age or length that is inconsistent with 214 

what would be expected from that multinomial distribution.  In such cases it has been argued that 215 

matching the variation in the means more properly acknowledges the information content of the data.  216 

The methods in this section are based on this principle.  Each also assumes that the ESS in a given year 217 

will be function of an input value ���, which is a measure of sampling intensity (in our applications we 218 

use number of fish aged or the number of sampling trips contributing to the age composition sample). 219 



 

 

Equations used to determine ESS used for each year (���) for these methods are given in Table 3.  Each 220 

bin has an age or length (e.g., at the midpoint length for the bin) associated with it and thus a mean 221 

observed age or length can be calculated.  The variance of such means can be determined based on the 222 

age or size distribution and the ESS.  In particular, the variance for the mean of � (where � is age or 223 

length) for a given year is given by ��/���, where �� = ∑ ������� − ����, and ��� = ∑ ������ . 224 

For method (D) we treat ESS as directly proportional to sampling intensity and use the estimator 225 

proposed by Francis, corresponding to his multiplicative error case.  For method (E) we assume that at 226 

very low sampling levels ESS increases directly (with slope 1) with sampling intensity but eventually 227 

approaches a maximum ESS for high sampling levels, corresponding to Francis’ additive error case.  For 228 

our last method (F) we generalize the first two approaches and allow ESS to increase to an asymptote, 229 

but do not restrict the value for the slope at the origin to be 1, as in method E.  Approaches D and E rely 230 

on the over-year variance of standardized deviations between observed and predicted values equaling 231 

1.0.  Given there is just one variance, ESS can be calculated to make the variance match this criterion 232 

exactly by either altering the slope or asymptote.  In the generalized approach (F) we consider annual 233 

individual standardized deviations of mean age (or length); (��� − ���)� ��/��� ) – note that 234 

asymptotically these have a standard (i.e., variance of 1.0) normal distribution (due to the central limit 235 

theorem) and that the square of a standard normal distribution is !� distributed with one degree of 236 

freedom.  The asymptote is estimated by minimizing the sum of the log of the !� densities of the 237 

squared standardized deviations (i.e., the log likelihood).  Although Francis’ algebraic and our statistical 238 

approach should perform similarly, using a statistical model can reduce the impact of outliers on the 239 

asymptote estimate, as long as the errors are in fact !� distributed as assumed by the model.  We 240 

attempted to simultaneously estimate both the slope and the asymptote but found that the data for 241 

both gear types in both the North Huron and Lake Michigan assessments did not provide sufficient 242 



 

 

contrast to do so.  Still, there need not be an expectation for an origin slope (") of 1.0.  To incorporate 243 

this observation we specified various values for " and recorded their impact on the standardized 244 

deviations for each data set in each assessment.  We chose the most appropriate value for " 245 

qualitatively by considering both the variance and graphical depictions of the distribution of 246 

standardized deviations.  As indicated above these should have variance of 1.0 and approximate a 247 

normal distribution.  In these qualitative analyses the slope at the origin (") for the gillnet and trap net 248 

fisheries varied together, i.e. we did not test all combinations of gillnet slope with each potential value 249 

for trap net slope. 250 

2.2 Catch-at-age Model 251 

In 1836 treaty waters of the North American Laurentian Great Lakes, statistical catch-at-age models are 252 

used in lake whitefish stock management.  The assessments are based entirely on fishery-dependent 253 

data and typically model both a trap net and gillnet fishery.  There are a total of 13 such age-structured 254 

assessments applied on a regular basis in this region.  Here we illustrate two examples, one for the 255 

northern Lake Huron assessment area and the second for the WFM-04 assessment area of Lake 256 

Michigan.  We started with the most recently fit models used for making harvest recommendations in 257 

October 2015.  These models spanned the years 1976-2014 and 1981-2014, and recognized ages 4 and 3 258 

(age of recruitment) to 12 and 16 (an accumulating age including that age and all older ages) for the 259 

North Huron and WFM-04 areas respectively.  The models were coded in AD Model Builder (ADMB; 260 

Fournier et al. 2012).  In both units we had available the number of aged fish as a measure of sampling 261 

intensity.  In the North Huron area we also had access to the number of sampled trips.  The fisheries and 262 

their management were described in detail by Ebener et al. (2005) and details of the assessment models 263 

were reported by Truesdell and Bence (2016).  The model components directly related to ESS are 264 

described here, and additional details are reported in Appendix 1. 265 



 

 

The proportions-at-age come directly from annual age sampling and were not inferred from an age-266 

length key or a growth model.  Observed and predicted ages and annual ESS were incorporated in the 267 

likelihood function using the multinomial log-likelihood: #� = ∑ �$,� ∑ &'�,( log,'̂�,(./(0�1�0�  where #� 268 

is the multinomial log-likelihood component, �$,� is the ESS in year 2, 3 is the number of years, 4 is the 269 

age-class index and 5 is the number of age classes, and '�,( and '̂�,( are, respectively, the observed and 270 

predicted annual proportions-at-age. 271 

We elected to fix the variances for each normally distributed data type or penalty in the objective 272 

function (see Appendix 1) at their final estimated values in the original assessment fit as we explored 273 

alternative approaches to estimating ESS.  We followed this approach to be consistent with the 274 

suggestion of Francis (2011), who suggested they be fixed and that the weighting of age compositions 275 

occur in a second stage. 276 

The ESS (�$,�) in the baseline 2014 models were set to the actual number of fish aged up to a specified 277 

maximum value of 100.  In years that the fisheries operated, gillnet sample size was always greater than 278 

100 fish ages in both North Huron and the Lake Michigan area.  Trap net sample size was typically 279 

greater than 100 fish ages, however in North Huron only 46 fish ages were available one year and in the 280 

Lake Michigan area there were four instances of less than 100 ages (see Table 4). 281 

2.3 Sensitivity of model-estimated quantities to ESS 282 

We examined the sensitivity of model-estimated quantities to ESS before moving on to our ESS 283 

estimation methods.  We did this by systematically varying the maximum trap net and gillnet ESS within 284 

the assessment models in Northern Huron and Lake Michigan (i.e., the maximum in Fig. 1B).  The scale 285 

of the variances for the non-multinomial likelihood components were fixed during these simulations at 286 

the values estimated in the two base models, but this was the only parameter that was fixed across 287 



 

 

these analyses.  An R program (R Core Team 2015) was designed to update this maximum in the ADMB 288 

data file at each iteration, and this program was linked to the model executable.  The maximum ESS was 289 

varied in each fishery between 4 and 400 at a resolution of 3 for ESS < 30 and at a resolution of 20 for 290 

ESS > 30.  The comparison of results for models of varying ESS was made using the average fishing 291 

mortality for ages 10-12 over the last 10 model years.  We also tabulated the sum of the negative 292 

penalized log likelihood (NPLL) for all components excluding the age compositions.  We did this to 293 

illustrate how the overall model fit, exclusive of the age composition log likelihood, depended on the 294 

assigned maximum effective sample sizes. 295 

2.4 Validating ESS estimation and performance of the methods 296 

When data are generated from a multinomial distribution these methods should, at least on average, be 297 

able to reproduce the actual multinomial sample size.  We evaluated this by considering the case where 298 

the actual proportions in each year were known.  Thus this evaluation did not involve fitting a stock-299 

assessment model, nor iterative adjustment of ESS, but instead a single application of the equations in 300 

Tables 2 and 3 to simulated data.  The the ��� and ��� in Tables 2 and 3 were known and the equations 301 

in those tables were applied once for each simulated dataset.  While knowing the proportions is not 302 

realistic, this procedure provides an upper bound on how well these methods can perform in recovering 303 

the true underlying sample sizes assuming the data are multinomial in nature. 304 

To reflect variability in annual sampling effort, the true ESS was varied over both 25 and 100 years.  The 305 

sampling intensity was assumed to come from a truncated normal distribution ��678$,�� ~�(:, cv�:�, =) 306 

where the mean, :, was 100, the CV was 1.8, and the minimum value, =, was 10 to prevent 307 

unrealistically small numbers of samples.  The CV used in the normal distribution was the average CV 308 

from gillnet and trap net number of trips and number of samples in North Huron.  ESS was assumed to 309 

follow the asymptotic relationship to number of samples as used in the regression methods (Table 2, 310 



 

 

column iv) with asymptote of 125 and slope at the origin of 1.0.  Given the truncated distribution and 311 

asymptotic relationship, the CV (among years) in true ESS was 0.39.  A vector of 9 probabilities ('), 312 

summing to 1 represented the true proportions in each age (or length) bin.  In each year of the 313 

simulation these probabilities were drawn randomly from the set of trap net and gillnet proportions-at-314 

age from the North Huron data set where all age classes had proportions greater than zero.  In each year 315 

a random multinomial vector of counts (��) was generated ��~>(', �678$,�� ), and these counts were 316 

converted to observed annual proportions in each bin.  The ESS was then estimated using the methods 317 

described above.  The ESS estimates were then compared to the known values (�678$,�� ) by subtracting 318 

the known ESS from the ESS estimates.  This was repeated 1000 times.  Some results were excluded 319 

from the analysis: in 12% of cases method E did not produce an estimated ESS (i.e., the ESS equation did 320 

not have a solution within the wide range of potential values we searched) and in < 2% of cases for 321 

model B.iv the nonlinear regression that determined ESS estimates did not converge. 322 

We also assessed the performance of the methods we tested for datasets with or without correlation 323 

structure.  To do this, we simulated data from the logistic-normal distribution 1000 times.  To derive 324 

these values we first drew year-specific values from the multivariate normal ��∗ ~�(�, @), with age-325 

specific elements �(�∗ ,	where � denotes the multivariate normal, @ the variance-covariance matrix and 326 

� the mean.  The elements of @ were consistent with an AR(1) structure, with adjacent ages having the 327 

highest correlation.  Each element of the observed annual proportions �� , �(�,	were obtained from the 328 

multivariate normal elements by �(� = exp	(�(�∗ )/∑ exp	(�D�∗ )D  , resulting in values between 0 and 1.0.  329 

The elements of � , �(, were set equal to the log of the elements of p (the expected proportions used in 330 

simulations from the multinomial distribution above), so on average the simulated proportions were 331 

close to the expected proportions used in those simulations. The variance-covariance matrix @  was 332 

parameterized by the variance (assumed equal among ages and set to 0.25) and the correlation 333 



 

 

between adjacent ages (E set to either 0 [no correlation structure] or 0.5 [correlation structure]). With 334 

the logistic-normal distribution one can view the proportions as arising from relative abundance indices 335 

that are multivariate lognormal, with the same CV across ages (approximately 0.5 in this case).  While 336 

the CV used in these simulations is somewhat arbitrary, we found qualitatively similar patterns as those 337 

we present using alternative values.  See Schnute and Haigh (2007) and Francis (2014, Appendix A) for 338 

more information about the logistic-normal distribution and use of the AR(1) structure to represent age-339 

compositions with correlation structure.  The number of samples	�� is used in the ESS estimation 340 

methods, and these were generated from a truncated normal distribution, following the same 341 

procedure as in the simulations from the multinomial simulation.  Because here we generated 342 

proportions at age from the same distribution each year, there was no relationship between simulated 343 

sampling intensity and the information content of the age-compositions, and this would likely 344 

disadvantage approaches to estimating ESS that assumed there was a relationship.  This made 345 

estimating two parameters for model B.iv unrealistic so the slope (") was fixed at 1.0.  Each of the 346 

approaches was applied to a 25-year data set of simulated proportions-at-age to estimate ESS.   347 

For the logistic-normal simulations, unlike for the multinomial simulations, the true effective sample size 348 

is not known, so it is not possible to formally assess bias. The methods that attempt to address 349 

correlation structure, however, are based on the idea that ESS should be set so that a multinomial 350 

distribution with a particular sample size would have the right variance in average age.  When using the 351 

multivariate logistic-normal distribution with specific parameters to generate composition samples, we 352 

found the true value for this variance by simulating 10,000 age composition samples that were 353 

multivariate logistic-normal samples, calculating the average age for each sample, and then the among 354 

sample variance in these averages.  The sample size that would produce this variance in mean age for 355 

multinomial samples was then determined from the analytic relationship between sample size and 356 



 

 

variance in average age (see section 2.1.3).  In at least one sense this is a value the estimated ESS values 357 

should match. 358 

2.5 Application 359 

We next applied each of the iterative methods to both of the assessment models, and summarized 360 

results in terms of estimates of ESS and fishing mortality for ages 10-12 (fully selected or nearly fully 361 

selected in both areas for both trap nets and gillnets) in the last 10 years of the assessment.  For the 362 

North Huron assessment we used both number of aged fish and number of sampled trips as our ��� in 363 

different trials.  Our baseline evaluation used the ESS (���) that were assumed in the original 364 

assessments in the iteration 0 assessment.  The " levels we used (for method F) were: 0.75 for both the 365 

North Huron trap net and gillnet fisheries using number of fish sampled as ���, 5 and 65 for the north 366 

Huron trap net and gillnet fisheries using trips as ��� and 1.0 for both the Lake Michigan trap net and 367 

gillnet fisheries using fish as ���.  We performed a simple analysis to verify that different starting values 368 

produced the same estimates for ESS and in most cases they were consistent (save some instances 369 

when using methods E and F (Appendix 2). 370 

3 Results 371 

3.1 Sensitivity of model-estimated quantities to ESS 372 

In the North Huron analysis, the average F over the last 10 model years was generally < 0.15 except in 373 

some cases where both trap net and gillnet ESS were greater than about 150 (Fig. 3).  In the Lake 374 

Michigan assessment, the average F generally decreased with increasing gillnet maximum ESS, and 375 

increased as trap net maximum ESS increased.  This inverse relationship was case-specific as the same 376 

was not true in North Huron.  The most variability occurred when either trap net or gillnet maximum ESS 377 

were low. 378 



 

 

In both assessment models the NPLL decreased with increased trap net and/or gillnet ESS (Fig. 3) 379 

because when the model weighted the age compositions heavily less relative weight was assigned to the 380 

other likelihood components.  The North Huron model was more robust to combinations of ESS – in the 381 

Lake Michigan assessment the NPLL was still relatively low if either trap net or gillnet ESS was increased 382 

but when they increased together the fit to the non-composition data became poorer more quickly than 383 

in North Huron. 384 

3.2 Validating ESS Estimation 385 

The two quantities of interest when evaluating the performance of these methods by estimating a 386 

known ESS from simulated multinomial data are (1) bias and (2) precision.  All methods produced 387 

negligible bias (Fig. 4).  Methods A.ii.b and B.ii.b were biased slightly low, but the average bias (< 10) was 388 

small relative to the true mean ESS of 100 and especially relative to the noise generated by many 389 

methods; for example the 90th percentile for bias in methods A.i, B.i and C.i was > 70.  Our results 390 

demonstrate that the unconstrained annual estimates are imprecise and provide little information 391 

regarding the year-specific true ESS (i.e, the variation in estimated ESS was much greater than variation 392 

in true ESS (CV of 0.83 to 1.27 rather than CV of 0.39).  Thus their use may be problematic, as they might 393 

typically provide more noise than information about year-specific information in age compositions. The 394 

other potential methods that could not account for correlation structure (A.ii.a, B.ii.a, C.ii.a, A.ii.b and 395 

B.ii.b and B.iv) summarized the annual estimates in some way (e.g., via a geometric mean or a regression 396 

model).  Method B.iv performed the best in terms of both accuracy and precision under these simulated 397 

conditions.  All the methods that can incorporate correlation structure (D-F) performed well in terms of 398 

bias, though method D was typically more precise.  Methods E and F performed similarly and had more 399 

outliers than the variants of methods A, B and C which included some kind of summarization (i.e., were 400 

not A.i, B.i or C.i).  The methods that accounted for correlation structures (D, E and F) performed better 401 



 

 

when 100 years of data were used instead of 25 because there were a greater number of observations 402 

(years) available.   403 

When data were simulated using the logistic-normal distribution with no assumed correlation, the 404 

methods that can account for correlations (D, E and F) performed similarly to the methods that cannot 405 

account for correlations in terms of their average value (Fig. 5).  Methods A.i, B.i and C.i again produced 406 

some unrealistically high estimates, as did some of the estimates from methods D, E and F (though to a 407 

lesser extent).  When the data were simulated using a correlation of 0.5, methods D, E and F estimated 408 

smaller effective sample sizes than the methods that cannot account for correlations.  The sample size 409 

that produced variances in mean age for samples from a multinomial distribution that matched the 410 

variances in mean age for samples from the multivariate logistic-normal distributions we used were 44 411 

and 29, for ρ=0  and ρ=0.5, respectively.  We found that the methods that accounted for correlation 412 

structure changed ESS, on average, roughly in accord with these values, whereas methods that did not 413 

account for correlation structure showed no such change (Figure 5). 414 

In summary, the results of the multinomial and logistic-normal simulations – under ideal conditions that 415 

are unlikely to be replicated in real-world scenarios – show that (1) unconstrained year-specific values 416 

are noisy and will often reflect sampling error rather than true variability in ESS; (2) all of the methods 417 

can perform well in terms of bias; (3) methods that can incorporate correlation structures have a more 418 

pronounced increase in precision with a longer time series and (4) when correlations are actually 419 

present methods that use the mean length or age (D, E and F) tend to produce smaller ESS estimates 420 

than methods that cannot account for correlations in the data. 421 

3.3 ESS estimates 422 

Methods A.i, B.i, and C.i resulted in annual estimates of ESS that varied widely and were unrealistically 423 

high in some years for both gear types in North Huron (Fig. 6) and Lake Michigan (Fig. 7).  Computing a 424 



 

 

summary statistic among years for these methods (methods A.ii.a, B.ii.a and C.ii.a) reduced the ESS 425 

estimates to values more consistent with levels typically used in stock assessment models. 426 

Methods that assume ESS to be proportional to annual sample size (methods A.iii, B.iii and C.iii) also 427 

reduced the range of ESS estimates relative to methods that freely estimated annual values (methods 428 

A.i, B.i and C.i).  Methods A.iii where �� is the number of samples and A.iii where �� is the number of trips 429 

resulted in larger estimates of ESS than the corresponding methods B.iii and C.iii for the trap net fishery 430 

in the North Huron model, but resulted in similar estimates for the gillnet fishery. 431 

Methods B.iv using fish as �� and B.iv using trips as �� (in North Huron) incorporated a regression of the 432 

predicted ESS from method B.i against the actual sample size used in nonlinear models to predict �� 433 

(Fig. 8).  These methods produced estimates for ESS that spanned a similar range to methods A.ii, B.ii, Cii 434 

and A.iii, B.iii, and Ciii (Figs. 6 and 7).  The models for trap nets and gillnets that were based on the 435 

number of fish aged all had origin slopes that were larger than 1.0, though in North Huron these were 436 

larger by <0.1 (Table 5).  The asymptotes for these models ranged from 94.6 to 324.  The origin slope for 437 

the North Huron trap net fishery that used a model based on number of trips was approximately 1000, 438 

and consequently there was little relationship between estimated ESS and number of trips for North 439 

Huron trap nets, and thus essentially an average value (the asymptote, 334) was used in all years.  The 440 

origin slope for the North Huron gillnet fishery was 5.70. 441 

For both the North Huron and Lake Michigan models, approaches accounting for correlation structures 442 

(methods D, E and F) generally produced smaller ESS estimates than methods that did not, with method 443 

D generally producing slightly larger values and a larger range in North Huron (Figs. 6 and 7).  Methods E 444 

and F generally produced the smallest ESS.  Across all years and all methods that were tested, the 445 



 

 

median ESS for the methods that could incorporate correlation structure were always smaller than the 446 

median for the methods that could not incorporate correlation structure (Table 5). 447 

For the generalized mean approach we chose values for " according to the variance of the standardized 448 

residuals and the appearance of the relationship between the standardized residuals and the number of 449 

fish or number of trips (e.g., Fig. 9).  The variances that were nearest to 1.0 produced plots that looked 450 

closest to standard normal, though in some cases a range of "s produced plots that were nearly 451 

indistinguishable.  The "s that were chosen and the subsequent maximum likelihood estimates for the 452 

asymptotes (���) were: 0.75 and 32 (North Huron trap net using fish), 0.75 and 132 (North Huron 453 

gillnet using fish), 5 and 96 (North Huron trap net using trips), 65 and 140 (North Huron gillnet using 454 

trips), 1 and 64 (Michigan trap net using fish), and 1 and 11 (Michigan gillnet using fish). 455 

The most relevant findings from our applications of these methods to the two Great Lakes stocks were 456 

(1) the unconstrained year-specific approaches produced very noisy ESS estimates; (2) various methods 457 

were similarly successful at reducing the noise by summarizing the unconstrained estimates in different 458 

ways; and (3) the methods that allowed for correlation structures in the composition data produced 459 

lower estimates of ESS. 460 

3.4 Fishing mortality estimates 461 

The North Huron and Lake Michigan assessment models responded differently to the variability in ESS 462 

estimates.  For the North Huron model, most average F estimates were between 0.1 and 0.11 (Fig. 10A).  463 

For the Lake Michigan model, estimates of F were more variable among ESS estimation methods, 464 

ranging from 0.17 to 0.36.  The methods accounting for correlation structure produced estimates of 465 

average F > 0.3 while most estimates not accounting for correlation structure produced estimates <0.3  466 

(Fig. 10B).  Despite large differences in estimated ESS in North Huron (Fig. 6) the different methods 467 



 

 

corresponded with similar average F (Fig. 10A).  However, in Lake Michigan the variability in ESS 468 

estimates (Fig. 7) caused measurable differences in the F estimates (Fig. 10B). 469 

4 Discussion 470 

The ESS used in a catch-at-age or catch-at-size model’s objective function (what is minimized when 471 

fitting the model) can have considerable impact on the estimates for stock quantities important to 472 

sustainable management, such as fishing mortality.  When ESS is high the model is forced to fit 473 

proportions-at-age (or at-size) closely; conversely when ESS is relatively low the model provides a better 474 

fit to other quantities such as the total catch or a survey CPUE.  The alternative ESS weighting changes 475 

the likelihood surface and impacts the estimates, most notably in cases where the composition and 476 

other data sources are in conflict.  Even if all data sources are in agreement (i.e., there is zero process 477 

error), mis-weighting the composition data may reduce the precision of stock quantity estimates, even if 478 

they remain unbiased (Maunder 2011). 479 

The impact of ESS on model output in applications to actual fish populations can be substantially greater 480 

than is suggested by simulations where composition and other data sources are not in conflict.  The Lake 481 

Huron and Lake Michigan examples had very different relationships between ESS (for both gears) and 482 

estimated fishing mortality, but both demonstrate the importance of assigning accurate weights to 483 

compositional data.  Mis-specifying the ESS can clearly change estimates of quantities such as fishing 484 

mortality which will affect stock management strategies.  These findings re-emphasize that the 485 

sensitivity of models to ESS should be tested as part of assessment model diagnostics (Brodziak 2002, 486 

Maunder 2003). 487 

Year-specific unconstrained annual ESS were imprecise in our multinomial simulations (Fig. 4), and when 488 

used in our applications led to some years with unrealistically high ESS – a result alluded to by de Moore 489 



 

 

et al. (2012).  Hulson et al. (2012) reported more frequent and consistent stock assessment errors in a 490 

simulation study when annual rather than mean ESS was used (estimated as parameters using the 491 

Dirichlet distribution) and suggested that this result might indicate an overparameterization issue when 492 

using annual ESS.  One way to reduce the amount of noise is to combine information from different 493 

years.  Using all the years of data to estimate a single ESS to apply to each year is one such approach, 494 

and we illustrated a variety of ways of doing this based on methods presented by McAllister and Ianelli 495 

(1997) and Francis (2011). 496 

Another approach to combining information across years is to assume a relationship between ESS and 497 

sampling intensity.  Maunder (2011) evaluated using a zero intercept linear regression between 498 

unconstrained annual values and sampling intensity, and suggested that this approach could be 499 

generalized by using an asymptotic relationship.  We applied this more general regression approach and 500 

also assumed an asymptotic relationship in our generalized mean approach.  Francis (2011) also 501 

presented non-regression approaches that assumed either direct proportionality or a specific 502 

asymptotic relationship.  We found in our simulations that all these approaches did increase precision of 503 

ESS estimates relative to the unconstrained values.   When information content varies, use of 504 

unconstrained estimates is not the only choice and we strongly recommend using one of the other 505 

approaches that estimate ESS as a function of annual sampling intensity. 506 

When estimating a functional relationship between ESS and sampling intensity, we sometimes 507 

estimated high origin slopes (greater than 1.0 when using fish and greater than the average number of 508 

fish per sampling event when using trips), which has the potential to produce ESS that is consistently 509 

larger than the actual number of fish sampled in years with low sampling intensity.  This could be 510 

avoided, if considered undesirable, by restricting the slope near the origin to values less than 1.0 (or 511 

some other reasonable value if sampling intensity is measured in units other than numbers of fish). 512 



 

 

The methods we tested that allowed correlation structures (i.e., D-F), tended to estimate smaller ESS for 513 

real data in our applications, and were not biased when data were actually multinomial in simulations.  514 

In addition when we introduced positive correlation between adjacent ages in simulations, these 515 

methods estimated lower ESS, which was not the case for methods that did not account for correlation 516 

structure.  These results suggest that in our applications correlation structures in the composition data  517 

were large enough to substantially influence information content for both stocks, and were likely a 518 

function of the clustered samples or model inadequacies that cause such correlations.  This finding 519 

agrees with other studies: Francis (2014) considered composition data from 28 stock assessments, and 520 

found evidence for correlation structures in most of them, and other studies also suggest that such 521 

correlation structures may be common (Pennington and Vølstad 1994, Hulson 2011, Maunder 2011). 522 

Despite widespread use of the multinomial likelihood for describing composition data in catch-at-age or 523 

catch-at-size models, the application of this distribution in these likelihood functions has two important 524 

limitations (Francis 2014).  First it is not possible to estimate ESS within the model, which is why iterative 525 

approaches such as those discussed here are necessary.  Second, the multinomial distribution cannot 526 

directly account for correlation structures within the composition data.  An alternative to methods that 527 

account for correlation structures by using mean age or mean length is to replace the multinomial with a 528 

distribution capable of incorporating correlation structure and that has a weighting that can be 529 

estimated within the model.  A number of distributions with estimable weights have been suggested 530 

and evaluated (e.g., Maunder 2011, Hulson et al. 2012).  Francis (2014) argued for the consideration of 531 

the logistic-normal, which he considered promising because the data are restricted to the 0-1 range and 532 

because it can account for correlation structures.  Maunder (2011) evaluated distributions with 533 

estimable weights (but that could not incorporate correlation structures) and found that precision of 534 

stock estimates was degraded due to some types of process errors that produce correlation structures.  535 



 

 

This supports Francis’ (2014) argument that the most promising distributions with internally estimated 536 

weights are those allowing for correlation structure. 537 

A different approach to accounting for correlation structures in compositions is to model the catch-at-538 

age using multivariate distributions (such as the multivariate lognormal) rather than treating the 539 

composition and total catch data separately (Myers and Cadigan 1995).  Use of the catch-at-age data, 540 

rather than proportions and totals, underpinned early age-structured assessments but was largely 541 

dropped because of the unrealistic variance-covariance structure, although advances in statistical 542 

modeling have made the specification of more realistic variance-covariance structure feasible (Berg and 543 

Nielsen 2016).  Fournier and Archibald (1982) argued for separate treatment of total catch and 544 

composition data in part because these data often arise from separate data collection efforts. 545 

There are hurdles to overcome in generally applying the logistic-normal or other distributional 546 

approaches.  One is to identify appropriate correlation structures, and another is how to handle zero 547 

values for observed proportions, which the logistic-normal does not allow.  Similar issues apply when 548 

modeling catch-at-age directly.  Francis (2014) suggested initial approaches to both.  With regard to 549 

correlation structures he considered both AR(1) and AR(2) correlation models among bins, but identified 550 

the sex-specific case as remaining problematic.  With regard to zero values he suggested compression of 551 

composition data (aggregating the bins for youngest/smallest and oldest/largest) to reduce the number 552 

of zeros, combined with adding a small constant to proportions.  He took the view that zeros are more a 553 

problem to deal with than a phenomenon to model, although he did indicate that an alternative 554 

approach would be to consider compound distributions (e.g., logistic-normal combined with 555 

multinomial) to allow for zeros.  Thus the use of distributions that allow for correlation structures is 556 

promising, although more work is needed to develop them and evaluate alternative approaches to their 557 



 

 

implementation.  In the meantime, there is no doubt that multinomial distributions will remain a widely 558 

used approach. 559 

Another alternative to the iterative approaches is to fix the ESS a priori.  One approach to this is to 560 

follow general guidance such as use of actual number of fish contributing to the composition up to a 561 

maximum (Fournier et al. 1998) or the square-root of sample size (Thompson 1995, cited by Hulson 562 

2012).  An alternative is to base the ESS on the analysis of data outside the assessment such as by using 563 

survey design theory (e.g., Pennington et al. 2002).  The adequacy of the first of these approaches 564 

depends entirely on how well the ESS from the general guidance reflects the information content in the 565 

specific composition data.  The Pennington et al. (2002) survey design estimator (PSDE) has promise as a 566 

way to define ESS a priori as it is based on the actual data used to generate compositions and accounts 567 

for correlation structures by use of means.  Although this estimator has largely been used in sampling 568 

design applications, Hulson et al. (2011) recognized its potential use in stock assessments.  Hulson et al. 569 

(2011) used a detailed process model (e.g., incorporating age-related schooling and depth distributions, 570 

cluster sampling, and aging error) to simulate age compositions and, as in our simulations, applied ESS 571 

estimators outside a stock-assessment model.  Hulson et al. (2011) found two estimators that did not 572 

account for correlation structure (the unconstrained annual estimator (A.i) and a maximum likelihood 573 

estimator using the Dirichlet distribution) produced similar estimates of ESS on average, whereas the 574 

PSDE sometimes produced quite divergent average ESS results.  At least some of these differences could 575 

be due to the type of correlation structure present.  For example, Hulson et al. (2011) found higher 576 

average ESS from the PSDE than other estimators when they assumed single ages schooled together, in 577 

contrast to mixed age schools, where the average from PSDE was lower than for the other estimators.  578 

This is consistent with the PSDE adjusting for correlation structure, given that single-aged schools would 579 

be expected to cause greater than anticipated negative correlations in proportions (compared to 580 



 

 

Dirichlet/Multinomial), whereas mixed age schools would be expected to produce positive correlations 581 

between adjacent ages.  However, the PSDE produces imprecise annual values (Hulson et al. 2011) so it 582 

may be that this approach should be adapted to link estimates over years (e.g., via regression or using 583 

hierarchical models).  One concern with a priori estimators is they can only account for influences 584 

detectable from the sampling data, not from other process errors that influence the data but are not 585 

accounted for in the assessment (Francis 2011).  An open issue is the extent to which such process 586 

errors can and should be addressed by treating them as part of the observation process (i.e., adjusting 587 

ESS) versus explicitly modeling them, perhaps using state-space approaches (e.g., Berg and Nielsen 588 

2016, Stewart and Monnahan 2016).  However, given that current practices do not approximate the full 589 

range of process error (e.g., arising from temporal variation in selectivity that may not be as smooth as 590 

assumed), it is likely that a priori specification of ESS will lead to over-fitting of the processes that are 591 

included in the assessment to the observed composition data. 592 

We recommend our generalized mean approach for estimating annual ESS; this approach allows for 593 

correlated proportions as did approaches using means suggested by Francis (2011) but is more flexible 594 

in the relationship between ESS and sampling intensity than those methods.  We think the asymptotic 595 

function that is not constrained to have a slope of 1.0 at the origin may have quite general utility 596 

because it allows consideration of different measures of sampling intensity that scale differently.  We 597 

found that the slope at the origin and the asymptote for the relationship between ESS and �� could not 598 

be uniquely estimated through optimization of an objective function for the applications we considered.  599 

However, the generalized mean approach forces consideration of what the slope near the origin should 600 

be (and if its precise value matters).  In our example (Fig. 9) the standardized residuals did not change 601 

substantially between " =0.25 and " =1, however these were clearly better than smaller "s.  This was a 602 

common theme across the fisheries and data types we examined; however, much of the benefit is in 603 



 

 

ruling out unrealistic "s rather than choosing the best.  The reason that the standardized residuals did 604 

not change much is probably lack of contrast in the sampling.  While there was annual variability there 605 

were not many instances where very few samples were taken, which is where " is most important.  It 606 

follows, then, that we could not estimate " and that different values do not dramatically affect the 607 

standardized deviations.  However, some fisheries may have few samples in enough years to make the 608 

slope at the origin an influential term and we think it is important to be explicit about the slope at the 609 

origin when using an asymptotic model. 610 

The analysis we used to determine fixed values for " (e.g., Fig. 9) was not global because we did not look 611 

at all combinations of trap net " against all combinations of gillnet " (we used the same slope for both 612 

gillnets and trap nets).  If " cannot be estimated, a more comprehensive (though still ad-hoc) approach 613 

would be to estimate the asymptote conditional on a set of fixed "s, in this case for both trap nets and 614 

gillnets, and evaluate all combinations.  For each combination a !� probability could be calculated as the 615 

sum of the individual probabilities, resulting in a table of !� probabilities.  This landscape of !� 616 

probabilities could then be used to pick a satisfactory " to use for each gear.  If the choice is not obvious 617 

it would be prudent to run a sensitivity analysis for " on the assessment model to ensure that any 618 

subjective decision does not substantially affect the results. 619 

In our application we found that ESS results were quite similar whether we used numbers of fish or 620 

number of trips as a measure of sampling intensity.  This will not always be the case when the average 621 

number of fish sampled per trip varies more substantially among years.  Thus it is possible that one 622 

measure of sampling effort will be a better predictor of ESS than another, or even that ESS could be best 623 

predicted by considering multiple measures of sampling effort at the same time.  The generalized mean 624 

approach could quite readily be modified to consider such options or alternatively to simply assume and 625 

estimate a constant ESS if there was little contrast in among-year sampling levels.  626 
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Tables 733 

Table 1. Definitions of symbols used in Tables 2 and 3. 734 

Symbol Description 2 Index indicating year F Index indicating age or length bin ��� Effective sample size used in assessment model and updated during each iteration. ��� The observed proportion in a bin for a year ��∗ Vector of observed counts in bins for a year from a multinomial distribution ��� The assessment model estimate of the probability in a bin for a year  

Y Number of years for which there are composition data 

B Number of bins for each year of composition data ��� The observed average for age or length ��� The assessment model estimated average for age or length �� The variance in age or length in a given year based on the assessment model estimates 

of the composition for that year (the ���). �� Unconstrained effective sample size, either used as ��� or as input to assessments 

when using sub-approach i, or as input for some calculations using other sub-

approaches. �G� Year-specific and pre-specified upper limit used in calculation of �� � Single value for effective sample size calculated for approach ii and used as 	��� for all years. ��� Measure of sampling intensity such as number of fish aged or number of trips sampled. ��� A prediction of effective sample size based on sampling intensity.   � A proportionality constant relating predicted effective sample size to sampling 

intensity ��(H Asymptote to relationship between ��� and ��� " Slope at origin for asymptotic relationship between ��� and ��� 

 735 

 736 



 

 

Table 2. Methods that do not allow for correlation structures among proportions.  The ESS to be used in fitting the assessment model in the next 737 

iteration is given by ��� = ��, ��� = �, or ��� = ���, depending on whether sub-approach i, ii, or iii and iv, respectively, are used.  See Table 1 for 738 

descriptions of notational conventions and variables.  The geometric mean function is indicated by IJ.  The maximum function, J4�, is taken 739 

over its arguments.  K4L(�) is the usual sample variance.  Without a subscript it is calculated over years and bins.  When subscripted by year it is 740 

calculated over bins for the specified year.  Naming conventions for the methods in this paper are based on this table.  For instance, McAllister 741 

and Ianelli’s (1997) method using a constant value based on the geometric mean is named A.ii.a. 742 

 743 

Basic 

Method 
(i) Unconstrained Year-specific Values (ii) Constant value  

(iii) Values proportional to 

sampling intensity 

(iv) Statistical 

estimates (via 

regression) 

A.  

McAllister 

and Ianelli 

�� = max O∑ ���,1 − ���.�
∑ ,��� − ���.��

, �G�P 
 

a.  � = gm(��) 
or 

b.  � = ∑ $QR,�S$QR.QR
∑ ,TQRS$QR.UQR  

� = gmV�����W 

��� = ���� 

��� = ��(H�����(H" + ��� 

B. Francis 

TA1.2 

�� = maxV1/K4L� X ��� − ���
Y���(1 − ���)Z , �G�W 

 

a.  � = gm(��) 
or 

b.  � = 1/K4L [ TQRS$QR
Y$QR(�S$QR)\ 

� = 1/K4L
]̂
_̂ ��� − ���
`���(1 − ���)/���ab

bc 
��� = ���� 

��� = ��(H�����(H" + ��� 

C. Francis 

TA1.3 

�� = max X (d − 1)∑ (��� − ���)�/���� , �G�Z 
 

a.  � = gm(��) 
b.  Use C.iii with ��� = ��, so: 

� = 3(d − 1)/e (�����− ���)�/��� 

� = 3(d − 1)/e ���(�����− ���)�/��� ��� = ���� 

��� = ��(H�����(H" + ��� 

 744 



 

 

Table 3. Methods that allow for correlation structures among proportions by using observed and 745 

predicted average values from compositions rather than bin-specific proportions.  The ESS used in the 746 

assessment model at the next iteration is given by ��� = ���.  fghis the probability density function for a 747 !� distribution with one degree of freedom.  See Table 1 for descriptions of notational conventions and 748 

variables.  The maximum function is given as a function of an argument that is implicitly a function of 749 

other parameters, and the parameters the function is maximized over (" and ��(H) are given below the 750 

function.  For approach E, ��(H is adjusted until the ancillary equation is satisfied.  For approach F, " is 751 

(in this example) fixed a priori and ��(H is estimated using maximum likelihood. 752 

Estimator Effective N equation Ancillary  equation 

D.  Francis TA1.8 

 ��� = ���� 

 

 

� = 1 K4L X(��� − ���) `��/��� Z  

 

E. Francis TA1.9 

 

��� = ��(H�����(H + ��� 

 

 

K4L i(��� − ���) `��(1/��� + 1/��(H) 	j = 1 

 

F. Generalized 

mean-based 

 

��� = ��(H�����(H" + ��� 

 

 

# = max�	kl,me log&fgh,(��� − ���)� ��/��� ./�  

 

 

  753 



 

 

Table 4. Annual number of fish sampled and sampling events (trips sampled) for the two stock areas.  754 

The number of sampling events was not available for the Lake Michigan stock area. 755 

 Fish Sampled Sampling Events 

 Min Med Max Min Med Max 

North Huron       

Gillnet 415 923 2020 3 15 33 

Trap net 46 929 2288 1 11 26 

Lake Michigan       

Gillnet 126 343 1082 - - - 

Trap net 30 39 658 - - - 

756 



 

 

Table 5: Results for the North Huron and Lake Michigan trap net and gillnet fisheries giving (1) slopes (") 757 

and asymptotes (��(H) from the final iterations of method B.iv and (2) the median ESS across all 758 

methods that (a) do not incorporate correlation structures and (b) do incorporate correlation structures.  759 

Slopes and asymptotes were obtained by nonlinear regression of log(��) on log(���). 760 

 (1) Method B.iv (2) Median ESS 

 Fish Trip   

 "  ��(H " ��(H Methods A-C Methods D-F 

North Huron       

Trap Net 1.08 324 10001 334 172 31 

Gillnet 1.08 212 5.70 473 142 128 

Lake Michigan       

Trap Net 1.59 100 - - 62 50 

Gillnet 1.81 94.6 - - 70 12 
1Such a high slope indicates essentially no relationship between ESS and number of trips for this fishery 761 

so effectively a mean ESS is used over all years.  762 



 

 

Figures 763 

 764 

Figure 1. Options for relating ESS to sampling intensity in catch-at-age or catch-at-size models: (A) a set 765 

ESS no matter the measured sample size, (B) proportional relationship between ESS and measured 766 

sample size up to a maximum, (C) proportional relationship between ESS and measured sample size, and 767 

(D) asymptotic relationship between ESS and measured sample size.  In principle, relationships between 768 

ESS and actual sample size could apply to other measures of sampling effort, such as the number of trips 769 

sampled rather than number of fish aged or measured.  770 



 

 

 771 

Figure 2. Process for estimating ESS using different iterative methods.  A: Flowchart describing the 772 

iterative process and the data that are used at each step.  B: The approaches described here for 773 

estimating ESS – details can be found in Tables 2 and 3.  774 



 

 

 775 

Figure 3. The top two panels are the average fishing mortality over ages 10-12 over the last 10 model 776 

years (indicated by the color scale) for varying combinations of trap net and gillnet ESS in the Northern 777 

Lake Huron and Lake Michigan stock areas.  Ages 10-12 are essentially fully selected by for both trap 778 

nets and gillnets.  For visualization values in North Huron > 0.2 (about 1%) were set to 0.2.  The bottom 779 

panels are the sum of the negative penalized log likelihood for all likelihood components excluding the 780 

age compositions (NPLL), scaled so the smallest values are 0.  For visualization NPLL values larger than 781 

171 in North Huron (about 2%) were set to 171.  Note the differences in each scale bar.  782 



 

 

 783 

 784 

Figure 4. Box and whisker plot summaries indicating the performance of ESS estimation methods under 785 

actual multinomial sampling.  The boxes indicate the interquartile range and the whiskers extend to 1.5 786 

times this range.  The horizontal lines within the boxes indicate the medians and the “+” denote the 787 

means.  The specific results of this test depended on the number of multinomial categories and the 788 

annual distribution of true ESS.  Plot A is over 25 years and plot B is over 100 years.  The y-axis range was 789 

set so all the data are not shown: outliers in methods A.i, B.i and C.i ranged to over 4000.  790 



 

 

 791 

Figure 5. Box and whisker plot summaries showing the estimated ESS for the different methods when 792 

the data are simulated from a logistic-normal.  Panel A assumes no correlation structure and panel B a 793 

correlation structure arising from E = 0.5.  Methods D, E and F are can account for correlation structure.  794 

These methods performed similarly to the other methods (in terms of their means and medians) but 795 

estimated smaller ESS when correlation structure was present.  The boxes indicate the interquartile 796 

range and the whiskers extend to 1.5 times this range.  The horizontal lines within the boxes indicate the 797 

medians and the “+” denote the means.  There were 25 years of sampling.  The y-axis range was set so 798 

all the data are not shown: outliers in methods A.i, B.i and C.i always ranged over 5000.  799 



 

 

 800 

 801 

Figure 6. ESS estimates for the North Huron gillnet (A, C) and trap net (B, D) compositional data sets.  802 

Panels C and D give the same information as A and B, but the Y axis scale has changed to give better 803 

resolution within the typical range of ESS estimates that are used in practice.  Underlining in the axis 804 

labels (i.e., methods A.i and B.i) indicates that the models did not converge after 25 iterations.  Methods 805 

that used ��� end with F or T, depending on whether the measure of sampling intensity was number of 806 

fish aged (F) or number of trips sampled for ages (T). The exception is method E, which only used 807 

number of fish aged.  808 



 

 

 809 

 810 

Figure 7. ESS estimates for the Lake Michigan stock area gillnet (A, C) and trap net (B, D) compositional 811 

data sets.  Panels C and D give the same information as A and B, but the Y axis scale was changed to give 812 

better resolution within the typical range of ESS estimates that are used in practice.  Methods that used 813 ��� always used the number of fish aged (indicated by F) as the measure of sampling intensity. 814 



 

 

 815 

Figure 8. Relationship between the estimated ESS using method B.i and the actual number of samples in 816 

the Lake Michigan (A and B) and North Huron (C and D) assessment areas for trap nets (A and C) and 817 

gillnets (B and D).  This relationship is used in method B.iv.  Solid circles are unconstrained annual 818 

estimates.  Curves give asymptotic relationship estimated by regression.  The crosses are the regression 819 

predicted values that were used as ESS in the next model iteration.  The plots given here represent the 820 

final relationship when ESS had converged.  821 



 

 

 822 

Figure 9. Example plot of �� against standardized deviations for use in the generalized mean method (for 823 

North Huron gillnets where �� is the number of fish sampled).  The best value for " results in a variance 824 

of the standardized deviations that is closest to 1.0 with a distribution of standardized deviations that is 825 

closest to standard normal.  The points are standardized deviations, the solid line is a kernel density of 826 

the standardized deviations (bandwidth = 0.5) and the dashed line is the standard normal curve.  Plots 827 

such as these can be evaluated in order to determine an appropriate " level.  828 



 

 

 829 

 830 

Figure 10. Average fishing mortality (ages 10-12 over the last 10 model years) for the North Huron stock 831 

area (A) and the Lake Michigan stock area (B) using the different methods to estimate ESS.  Vertical lines 832 

are the standard deviations.  Methods that used ��� end with F or T, depending on whether the measure 833 

of sampling intensity was number of fish aged (F) or number of trips sampled for ages (T). The exception 834 

is method E, which only used number of fish aged. 835 

  836 



 

 

Appendix 1: ESS sensitivity 837 

Table A1.1. Results of a simple sensitivity analysis to starting effective sample size.  Three starting 838 

scenarios were tested: (1) the number of fish or trips actually observed (the baseline); (2) the 839 

observations multiplied by 0.5; and (3) the observations multiplied by 2.  This gives the ESS estimates for 840 

each method in each model year for both assessments and both gears.  The maximum difference of the 841 

three scenarios was used here.  Each entry in this table represents the proportion of annual ESS where 842 

the maximum difference was less than 5.  In most cases the scenarios gave very similar ESS estimates.  843 

The outliers were methods E.F for the North Huron gillnet fishery, and method F.T for both the North 844 

Huron gillnet and trap net fisheries.  The reason for low correspondence for method E.F in the North 845 

Huron gillnet fishery is unknown.  The reason for low correspondence for method F.T (which uses 846 

number of trips as ��) in both North Huron fisheries is probably that these sensitivity analyses lacked a 847 

thorough investigation of potential values to use for the slope at the origin ("). 848 

 North Huron Lake Michigan 

Method Trap net Gillnet Trap net Gillnet 

A.i 1 0.97 1 1 

B.i 0.82 0.85 1 1 

C.i 1 1 1 1 

A.ii.a 1 1 1 1 

B.ii.a 1 1 1 1 

C.ii.a 1 1 1 1 

A.ii.b 1 1 1 1 

B.ii.b 1 1 1 1 

A.iii.F 1 1 1 1 

B.iii.F 1 1 1 1 

C.iii.F 1 1 1 1 

A.iii.T 1 1 x x 

B.iii.T 1 1 x x 

C.iii.T 1 1 x x 

B.iv.F 1 1 1 1 

B.iv.T 1 1 x x 

D.F 1 0.92 1 1 

D.T 1 0.92 x x 

E.F 1 0.36 1 1 

F.F 1 1 1 1 

F.T 0.38 0.15 x x 

 849 
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Appendix 2: Further information on Lake Whitefish catch-at-age models 851 

Here we describe the age-structured stock assessment models and how they were fit for the two lake 852 

whitefish stocks reported on in the main text.  Model structure and fitting approach have been 853 

developed by the Modeling Subcommittee for 1836 Treaty Waters (MSC).  In this paper we use these 854 

assessments as examples, and take the assessment and basic estimation approach as given.  Additional 855 

background and details on the assessment approach can be found in Truesdell and Bence (2016).   856 

Point estimates were obtained by fitting the models to input data by maximizing the penalized log-857 

likelihood (the objective function).  During model fitting the initial abundance-at-age was freely 858 

estimated and annual recruitments were estimated including a penalty for deviations from a Ricker 859 

stock-recruit function (Table A2.1, Eqn. 1).  Abundance-at-age outside the first year and recruiting age 860 

was calculated using instantaneous mortality rates composed of fishing and natural mortality (Table 861 

A2.1, Eqn. 2).  In both areas fishing mortality was broken into trap net and gillnet components. 862 

In both models, and for both fisheries, instantaneous fishing mortality rates were calculated as products 863 

of catchability, age-specific selectivity, and input annual fishing effort (Table A2.1, Eqn. 2).  Catchability 864 

and selectivity depended on parameters that were estimated during model fitting.  The log of 865 

catchability was time-varying and followed a random walk (Table A2.1, Eqn. 3).  In the Lake Huron model 866 

selectivity was a double logistic function for both fisheries (Table A2.1, Eqns. 4 and 5), whereas in the 867 

Lake Michigan model selectivity was lognormal for the gillnet fishery (Table A2.1, Eqn. 6) and logistic 868 

(Table A2.1, Eqn. 7) for the trap net fishery.  The selectivity functions were time-varying, where one 869 

parameter in each function varied via a random walk (Table A2.1, Eqns. 3, 4, 6 and 7, where log q�,� in 870 

the logistic and double logistic and log r� in the lognormal selectivity functions followed random walks).  871 

Selectivities were a function of mean lengths-at-age (rather than direct functions of age), so selectivity-872 

at-age could change if growth changed over time even if all selectivity parameters remained constant 873 

over years. 874 



 

 

The data that contributed to the objective function were annual catch- and proportions-at-age for each 875 

of the two fisheries.  The difference between the log annual catch for each fishery and the log predicted 876 

annual catch was modeled as normal (Table A2.1, Eqn. 8).  The objective function also included penalties 877 

for the deviations in recruitment, catchability random walks, selectivity parameter random walks and 878 

the difference between the log of the estimated natural mortality rate and that produced by Pauly’s 879 

temperature- and growth-based estimator (Pauly 1980).  Each of these penalty components was based 880 

on the assumption that the process errors involved (typically on a log-scale) were normally distributed 881 

so they each had the same basic form as the log likelihood component for catch (Table A2.1, Eqn. 8), but 882 

with component-specific standard deviations.  Observed and predicted proportions-at-age and annual 883 

ESS for each fishery were incorporated in the objective function using multinomial log-likelihood 884 

components (Table A2.1, Eqn. 9).  In all calculations length-at-age, the growth and temperature 885 

parameters used in Pauly's equation, and other life-history values used to calculate spawning stock size 886 

were provided to the assessment model and were not estimated or adjusted as the model was fit. 887 

In both lake whitefish assessments as they were originally fit by the MSC, a variance for a reference data 888 

source (for normally distributed variables) was estimated during model fitting, and ratios of this 889 

estimate to variances for other normally distributed data and process errors involved in penalties were 890 

specified (as in, for example, Fielder and Bence 2014).  These ratios were adjusted during model 891 

development by the MSC so as to produce source-specific variances in accord with prior expectations.  892 

These variances are the square of the standard deviations (e.g., rs� in the equation for the catch 893 

component).  In this study we elected to fix the variances for each data type or penalty at the final 894 

values that were obtained by the MSC as we explored alternative approaches to estimating ESS.  We 895 

followed this approach to be consistent with the suggestion of Francis (2011), who suggested they be 896 

fixed and that the weighting of age compositions occurs in a second stage. 897 



 

 

Equation Description 
Eqn. 

Number 

t� = "u�vSwx 

Ricker model where " and q are estimated 

parameters and u is the annual total 

calculated stock female egg weight based on 

the model abundance estimates.  Differences 

between estimated recruitment and the t� 

produced by Eqn. 1 contribute to a penalty 

term in the objective function (see Eqn. 8). 

1 

yz,�,( = {z,�,(|z,��z,� 

}�,( = >( + yx,�,( + y6,�,( 

��,( = ��S�,(S�vS~R,k  

��,� = ��S�,�S�vS~R,� + ��S�,�vS~R,�  

Equations for generating abundance-at-age 

outside the initial age composition and the 

recruiting age.  Annual gear- and age-specific 

fishing mortality (yz,�,() is the product of 

annual age-specific selectivity ({z,�,(), annual 

catchability (|z,�) and annual effort (�z,�).  

Gear types were gill net g=G, and trap net 

g=T.  Natural mortality-at-age (>() is the sum 

of a non-age-specific background rate and an 

age-specific rate from sea lamprey in North 

Huron.  Lamprey mortality was zero in the 

Lake Michigan area.  Abundance-at-age (��,() 

for all ages besides the plus group is the 

product of numbers in the previous year and 

annual age-specific survival (vS~R,k).  Plus-

group abundance-at-age (��,�) is calculated 

in the same manner but includes surviving 

individuals from the plus group in the 

previous year. 

2 

�� = ��S� + �� 

A random walk function where � is a time 

series of annual values following the random 

walk (e.g., log catchability) and �� is an 

annual change in that quantity from year 2 −1 to year 2.   

3 

{�,(∗
= X 11 + exp	(−q�#( − q�,�)Z [1
− � 11 + exp	(−q�#( − q�)�\ 

The double logistic equation.  The q� and q� 

parameters represent the slope of the 

increasing and decreasing logistic functions, 

respectively, and q�,� and q� represent the 

position of the inflection point of the 

increasing and decreasing functions.  {�,(∗  is 

the non-standardized selectivity and #( is the 

average length at age 4.  Selectivity is 

standardized by dividing each annual 

selectivity-at-age by the selectivity calculated 

at a reference length (Eqn. 5).  The function is 

applied to specific gears with gear-specific 

4 



 

 

parameters, but the subscript for gear is 

suppressed to simplify notation. 

{z,�,( = {z,�,(∗
{z,�,�∗  

Selectivity standardization.  Annual 

selectivity-at-age ({z,�,() for gear g is 

standardized using the raw selectivity-at-age 

function value ({z,�,(∗ ) and the selectivity at a 

reference length in each year ({z,�,�∗ ). 

5 

{�,(∗ = 1
r�#(√2� exp	V−

(ln(#() − :)�2r�� W 

The lognormal equation.  r� is the lognormal 

standard deviation in year 2, #( is the 

average length at age 4 and : is the 

lognormal mean.  Selectivity is standardized 

by dividing each annual selectivity-at-age by 

the selectivity calculated at a reference 

length (Eqn. 5). The function is applied to 

specific gears with gear-specific parameters, 

but subscript for gear is suppressed to 

simplify notation. 

6 

{�,(∗ = X 11 + exp	(−q�#( − q�,�)Z 

The logistic equation.  The q� parameter 

represents the slope and q�,� the (annual) 

position of the inflection point of the 

function.  {�,(∗  is the non-standardized 

selectivity used in the model and #( is the 

average length at age 4.  Selectivity is 

standardized by dividing each annual 

selectivity-at-age by the selectivity calculated 

at a reference length (Eqn. 5).  The function is 

applied to specific gears with gear-specific 

parameters, but subscript for gear is 

suppressed to simplify notation. 

7 

#� = −lnr� − ,log � − log ��.�2r��  

The normal log density for parameter � used 

to specify penalties.  The equation given is 

the likelihood for a single value.  Likelihoods 

for vectors of annual values (e.g., catch) are 

the sum of this function over all values.  The 

negative of these are "penalties."  Random 

walk parameters (e.g., catchability) are 

assumed to have a mean of zero (so log �� is 

zero). 

8 

#� = e �$,�e &'�,( log,'̂�,(./
(0�

1
�0�  

The multinomial log-likelihood for a series of 

annual proportions-at-age where �$,� is the 

ESS in year 2, 3 is the number of years, 4 is 

the age-class index, 5 is the number of age 

classes, and '�,( and '̂�,( are, respectively, 

the observed and predicted annual 

proportions-at-age.  This equation was 

9 



 

 

applied separately to the age compositions 

for each fishery (i.e., ESS and proportions 

were fishery-specific). 

 898 

 899 


